

Experimental Comparison of Visual-Aided Odometry Methods for Rail Vehicles

Florian Tschopp¹, Thomas Schneider¹, Andrew W. Palmer², Navid Nourani-Vatani², Cesar Cadena¹, Roland Siegwart¹, and Juan Nieto¹

¹Autonomous Systems Lab, ETH Zurich

²Siemens Mobility GmbH, Berlin

WHY ODOMETRY FOR RAIL VEHICLES

- Rail vehicle localization relies on infrastructure-side Balises (beacons)
- The rail segments are locked in **discretized large blocks**.
- Such a coarse locking leads to a **sub-optimal usage of the rail networks**.

Fig. 1: Standard interlocking strategy on rail networks based on infrastructure-side positioning (and signalling). A block is released only if the trains position is reported leaving the block. If a block is reserved, the next train has to be able to stop in front of the block.

- Use of moving blocks without discretization to increase the capacity of the network.
- Requires accurate and robust position and velocity estimation of all vehicles.
- > High level of safety by using **redundant and complementary sensors**.

VISUAL-AIDED ODOMETRY PIPELINES

Most promising available visual-aided odometry pipelines based on **filtering**, **sliding-window optimization** (SWO) and **batch optimization** are evaluated for rail applications.

	Estimator type			Sensors			Comment	
	EKF	SWO	Batch	Mono	Stereo	IMU		
ROVIO	x			х		Х	Light-weight EKF using patch tracking.	
VINS-Mono		х		x		х	Tightly coupled indirect monocular VI fusion.	
Batch			X	x		Х	Offline global batch VI bundle-adjustment.	
ORB-SLAM2		х			Х		Indirect stereo visual SLAM framework.	
OKVIS		x			X	х	Keyframe-based tight coupling of stereo VI fusion.	
Stereo-SWE		X			x	X	Tightly coupled VI fusion using depth as independent measurement.	

Table I: Overview of visual-aided odometry approaches.

Fig. 4: Aligned paths of the different motion estimation pipelines on trajectory 2. Due to unrecoverable resets of the estimator, VINS-Mono is omitted here. If not stated otherwise, a 31 cm baseline is displayed.

- ROVIO and VINS-Mono fail to work properly due to locally un-observable IMU biases caused by constraint motion and constant velocity scenarios.
- Bias observability can be partially recovered using global bundle adjustment.
- Using stereo constraints, **metric scale is observable** enabling accurate motion estimation.
- Incorporating inertial information is beneficial to increase accuracy and robustness in challenging scenarios as described below.

Table II: Median estimation errors (distance in %, heading in deg/m). ¹Contains resets of the estimator.

	Trajectory	Trajec	ctory1	Trajectory2		
	Segment length	10 m	$50\mathrm{m}$	$10\mathrm{m}$	$50\mathrm{m}$	
	ROVIO [2] ¹	66.570/0.0490	67.723/0.0578	75.292/0.0269	75.149/0.0210	
Visual-inertial	VINS-Mono $[3]^1$	5.060 / 0.1033	10.589 / 0.4093	43.552/0.0408	45.339 / 0.0525	
	Batch optimization [4]	7.092 / 0.0322	2.899 / 0.0066	12.361/0.0153	4.239 / 0.0084	
Stereo visual	ORB-SLAM2 [5]	2.138 / 0.0204	3.054 / 0.0093	1.786 / 0.0078	1.829 / 0.0033	
Stereo visual-	OKVIS [6]	2.152 / 0.0219	2.850 / 0.0070	1.428 / 0.0074	1.110 / 0.0038	
inertial	Stereo-SWE [7]	2.845 / 0.0249	4.029/0.0128	3.710/0.0099	3.840 / 0.0087	

Challenges

EXPERIMENTAL EVALUATION

- Investigation of applicability, challenges, and limitations of current visual and visual-inertial motion estimation frameworks for rail applications.
- Evaluation against RTK-GPS ground truth on multiple datasets recorded in industrial, sub-urban, and forest environments.

Datasets

- Trajectory 1 at low speeds ($\leq 25.5\,{\rm km/h}$) in an industrial environment.
- Trajectory 2 follows a public tramline with speeds up to 52.4 km/h.
 Collected using a custom-built stereo visualinertial sensor (see Fig. 2) which is synchronizing all measurements in hardware:
- 2 x Basler acA1920-155uc (2.3 MP, global shutter, 20 fps)

Fig. 2: Sensor consisting of two cameras (stereo) and IMU.

• ADIS16445 ($\pm 250 \text{ deg/s}, \pm 49 \text{ m/s}^2, 200 \text{ Hz}, 0.011 \text{ deg/s}\sqrt{\text{Hz}}, 0.001 \text{ m/s}^2\sqrt{\text{Hz}}$)

During our investigation, several challenging scenarios were observed:

- A: High speeds (> $40 \, \rm km/h$) can cause problems for non-optimized feature tracking algorithms.
- **B**: Visual aliasing is prominent especially if no inertial information is available.
- C: Fast changing illumination and reflections are challenging for all visual pipelines.

Fig. 5: Top: Errors of the best performing pipelines during trajectory2. The letters indicate selected challenging scenarios. Bottom: Camera images of the challenging scenarios.

CONCLUSIONS

 Precise and robust position and velocity estimation is essential to increase railway capacity due to coarse interlocking strategies.

Estimator Performance

Fig. 3: Aligned paths of the different motion estimation pipelines on trajectory 1. Due to unrecoverable resets of the estimator, VINS-Mono is omitted here. If not stated otherwise, a 31 cm baseline is displayed.

- Even without enforcing specific motions, visual-aided odometry methods can achieve **high accuracy odometry** on rail vehicles.
- Monocular VIO fails due to locally unobservable IMU biases, stereo vision enables consistent motion estimation. Inertial information increases robustness and accuracy.
- Visual-aided odometry in isolation is not reliable enough for safety critical application but can complement for failure cases of other sensors (such as GPS, wheel odometry, ...).

ACKNOWLEDGMENTS

This work was supported by Siemens Mobility, Germany. The authors would like to thank Andreas Pfrunder for his help in initial data collections and evaluations.

TuBT1-03.6